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Abstract

A three.dimensional object representation tecAnique for generating spherical-geometries and a fa_rt

procedure for computinq distances v_sinq this geometry is presented. An object is appro_'imated by an

infinite number of spheres. The shortest distance between two objects is obtained by Finding the two

spheres, one .from each object, that are cloaest. Ezceptionai numerical reaulta have been obtained, for

example, the maz_mem time for computing self-collision for a standard PUMA robot-arm is equal

to f.30 milliseconds with an error in distance of le,s than Icm. This makes the new technique an

invaluable tool for computinq distances and therefore, permits collision-detection in real-time. This

technique has been applied to a compiez robotic system ,;onsisting of two PUMA robots, each mounted

on a three-degyee of freedom platform _ed at the CIR3"SE to study robotic assembly of structures in

space.

Introduction

The fastcomputation of distances isan important p_rt ofmany robotic applications. Distances

between the elements of a robot manipulator, between elements of cooperating robot arms and

between the robotic elements and objects in the environment may allneed to be computed to

guarantee collisionfree payloa_i transportation and rnanipulation. Fast distance computation

is an asset to trajectory planning and rrmnipulatio;,planning and isessentialfor the on-time

implementation of collisiondetection and obstacle avoidance strategies. In the context of

vehicular navigation in both 2-D and 3-D environments, fast distance computations are also

important. Potential fieldsand other similarfunctions find use in trajectoryplanning and can

similarlybenefit from fast distance computation. Although all of these applications are not

e.xplicitlyaddressed in this paper, itisclear that the approach presented here isappropriate

whenever distance computations have to be fast.

tProfessor Tornero is Associar.e Professor at _he Univ,_rsidad Politdcnica de Valencia (Spain) and at present

Visiting Researcher at CIRSSE



This paper presents a modeling technique which is conceptually between the bubble model

of O'Rourke and Badler [I] and the generalized cylinders of Agin [2]. The model is derived from

the basic idea that an object can be approximated by an infinite number of spheres. Hence

it retains the advantages of the bubble model a_ld avoids the complexity of the generalized

cylinder. Using spheres, the shortest distance between two objects can be obtained by finding

the two spheres, one from each object, that are closest. Given these spheres, the computation

of the shortest distance is trivial. Further, the intrinsic symmetry of the spheres eliminates the
need to consider orientation.

Before presenting the sphere-based object representation technique and the associated fast

distance computational procedure, a brief discussioa of the problem and the work of others is

given.

Path planning is based on having a good description of the world with its constraints as

well as a clear description of the required motion. A popular method of planning gross motions

has been to create a configuration space (C-space) model [3, 4]. For a moving point, the

configuration space obstacles are easy to compute. The VGraph algorithm has been applied

successfully in 2-D and with cartesian manipulators [5]. A recursive version of the VGraph

algorithm has been developed to be used in 3-D [6, 7]. The extension of this technique to

articulated manipulators has been found to be very- computationally expensive.

Several attempts have been made to describe the space free of obstacles (free-space) rather

than the space of obstacles. Along this line, an early idea given by Brooks [8] was to define

conical volumes between objects. Later on Lozano-Perez and Brooks [9] presented the idea of

obstacles included in rectangular cell which were subdivided recursively into smaller ones. This

technique requires a great amount of computation for robot arms.

Some authors use spatia_ occupancy enumeration to model the freespace, and then determine

a collision free path using explicit spatial planning. Octrees, a special form of spatial occupancy

enumeration employs a successive subdivision of space into octants. Cells with different sizes

have been used to reduce the number of collision-detection computations [10]. Faverjon [11 l

describes an algorithm for transforming cartesian obstacles into obstacles in the space of the first

three joints of a manipulator. This is based on a hierarchical structure. The major difficulty in

any of these schemes, in addition to the price of initial computation, is the large computational

effort required to modify the configuration space o_" octree representation when objects move

and especially when they change orientation.

Since many elements of robotic systems are bounded by plane surfaces, polyhedra have

been used to develop procedures for computing distances [12]. However, the large number of

comparisons required for such elements is highly time consuming. Thus, some authors have

recast the problem into a standard linear programming form. Sometimes, norm 1 and norm co

rather than Euclidean distances are used to save computational effort [13]. Objects of revolution

have been used to obtain faster algorithms. However, this objects have the disadvantage of

combining curvilinear side surfaces with plane end surfaces. Replacing the end planes with

hemispheres is one way to speed up the algorithm [t4].

Several optimal-control techniques are based on a good description of distances between

objects. The problems are defined analytically: however, such problems are generally solved

numerically [15] and therefore distances can be computed at each step. Distances are also

required in order to create artificial potential fields. Repulsive forces are obtained as functions

of the distances to the other objects [16]. Some papers are interested in collision between mobile



objects [17, 18, 19]; however, the algorithms available for static objects do not work efficiently

with moving objects.

The thrust of this paper is to first describe an object representation technique based on

spherical-volumes and second to develop a fast procedure for computing distances between

these volumes. The good numerical results obtained validate thoroughly the theory as well

as makes this technique a valuable tool for distance computation and collision detection in

real-time. An existing robot system has been used to show how this technique may be used for

complex systems.

\

Object Representation

The modeling technique is based on the idea that any real object can be approximated by

an infinitenumber of spheres. For a particular object many differentsets of spheres can be

generated, depending of the degree of accuracy required. In general accura_ is directly related

to the complexity of the process for obtaining the set of spheres. Later on, we will introduce

the idea of degree-of-freedom as a first measurement of this complexity.

The way of generating a set of spheres for a given object is provided by introducing the

concept of dynamic-spheres. A dynamic-sphere is defined as a sphere whose center P(x,y,z)

can move in a three-dimensional space and whose radius is a function of the position at each

moment R(x,y_).

The object model corresponds to the volume swept by the dynamic-sphere when moving in

a bounded subspace. The subspace can be defined by

I. A set of inequality constraints,e.g.,Xo < x < xt.

2. A set of functional constraints in the form .f_(x,y,z)-- 0.

The number of functional constraints willdete.rmine the degrees of freedom for the center

of the dynamic-sphere. For example, a two-degree of freedom geometry isobtained when one

functional constraint isintroduced. In parametric representation, that is

A(z,y,:) =0

P = R = (1)

The complexity of the volume swept by the dynamic-sphere depends on the functions P(A|)

and R(A|), as well as the range of the A*s. To make the problem as standard as possible, Ai

will be fixed, AI E [0, 1], Vi.

The simplest class of objects for the one-degree of freedom geometry is obtained by consid-

ering linear functions of the form,

( P=Po÷,\P_R = Ro + (2)

We define a spherical-cone as the volume swept by a dynamic-sphere whose center and

radius obey linearfunctions in the parameter A _,sshown in equations 2. Particular cases of

thisgeometry for _ varying within a given range, such as spherical-cylinders,etc.,can be seen

in Figure I.



Figure 1: Sphel-ical-cones

For a spherical-cone i, Equations 2 can be rewa'itten in terms of the raxiius and center of the

end-spheres at the two extremes of the volume, (Pio, Rio) and (Pix, Ril), in the following way,

{P_ = P_0+ ,_ (P. - P_0)P_= _o + ,_ (-_, - _o) (3)

,_,_ [o,1]

The degree and the angle of convergence of a spherical-cone can be defined respectively by

(P-1- P.0)
ai = _rcain m (4)'_'= I P,,- P,ol'

For values of degree of convergence equal or greater than 1, (T/i _> 1), the volumes degenerate

into a simple sphere equal to the largest end-sphere.

For the two-degree of freedom case, the simplest geometry which cam be represented is a

dynamic-sphere moving tangentially between two planes, which is called as a spherical-plame.

In a similar way as a spherical-cone is bounded by r.wo end-spheres, a spherical-plane is bounded

by four end-spherical-cones which constitute the sides of the plane. A volume i of this kind

can be described by two sphericM-cone_ with a common end-sphere, [(Pi0, Rio), (Pil, Rix)] amd

[(Pi0, Rio), (Pi2, Ri2)], which constitute two continuous sides. The volume is then generated

from a dynamic-sphere which follows the following _.-'quations

P_ = Pio + Ait(P_t - P,o) + Ai2(Pi2 - Pio)

_&,X_2 _ {0,1]

According to E_tuations 5, the center of the dyuamic-sphere moves inside a para_llelogrwm,

which can be easily cut-off by line_, defined az inequality constraints, in the form of linear

combination of parmmeters A'a,

at • At + _2" ,\, < 1 (6)

A more general, but still simple, two degree of freedom structure can be obtained from two

opposite end-spherical-cones of the plane, [(Pio, Rio), (Pil, R.ix)] and [(Pi2, Ri2), (Pi3, Ri3)].

In this case, the geometrical locus of the center o[" the dynamic-sphere is not forced to be a
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Figure 2: Spherical-planes

parallelogram. However, several relationsbetween the two spherical-cones must be stated in

order belong to the same sphericaJ-plane.

Several kinds of spherical-planescan be obtained with thistwo-degree of freedom geometry

as depicted in figure 2. Spherical planes axe bounded at least by three spherical-edges which

are in the classof spherical-cones or one-degree of t'reedom geometries. These sphericM-edges

intersectin spherical-verticeswhich corresponds to the zero-degree of freedom geometries.

Dynamic-spheres with three degrees of freedom axe not considered in this paper, given

that the most outstanding advantage of thisobject representation technique comes from the

possibilityof generating three-dimensional models with less than three degrees of freedom.

However, the basic idea can be easilyextended to dyne'Talc-spheresmoving in three or even

more degrees of freedom. Extra degrees of freedom can be introduced in order to increase the

accura_-'yof the representation or to consider aspects such as the time-factor for describing

movements of objects in the space.

Procedure for Fast Distance Computation

The problem of finding the shortest distance betweeu two bodies whose volumes have been gen-

erated by the movement of two dynamic-spheres. (l_,_) and (Pj,Rj), along their trajectories

can be stated as a Min-Ma.x problem as follows,

,xm..!._{f{lP,(,\,)- Pj(,\j)[-/_(A_)- R#(A_)}}
(7)

where f{x} = x ifz >_.0

= 0 otherwise

The problem can be expressed in terms of finding two spheres, each belonging to a distinct

geometric structure,with the shortest distance between them.

Distance Between Volumes Generated from Dynamic Spheres with

One-degree of Freedom

The kind of functions selected in the definition of the movement of centers Pi(Ai) and evolution

of the radius R,(Ai) affects directly the complexiw of the Min-Max problem. Even for the



/
Figure 3: Distance between two spheric&l-cones

simplest objects generated from spheres with one degree of freedom and linea_ functions the

treeof Euclidean distances means that, the set of resultingequations involve square roots.

The set of non.linear equations for computing the distance between two spheric&l-cones as

shown in Figure 3 can be simplifiedresulting in two sets of vector equations which solve the

problem in two steps.

I. Compute the direction of the shortest distance.

_."(Pil- P_o)= _i - _0
_.-(e_1- ej0)= -(e_,- Rio)

(s)

where the unknown _, is the unitary vector in the direction of the shortest distance

between volumes and which isperpendicular to both surfaces.

2. Compute the spheres involved.

P,o+ A_.(P,,- P;o)= Pro+ Aj.(Pj,- Pjo)+ d.n.

where Ai and Aj axe the parameter values which define the spheres involved

d is the distance between the ceutersof these spheres

The distance isobtained as follows.

(9)

The unitary vector if, perpendicular to the surfaces can be computed by using a pseudo-

polax coordinate system representation, as shown in Figure 4, and is based on the three following

vectors

_,_= (P_L- P_o)
IP.- Piol

_# = (Pj,- eio) (11)
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Figure 4: Pseudo-Polar C,_rdinate System

Any point in space, or any vector centered a_ the coordinate origin can be described in

terms of a linear combination of these three unitary vectors. Thus

_.= g.,._ + g.,•_j+ g_._o (12)

where g., = p- cosS. _=--.(,_.l

g,j = p.co8 8. .---,,,_

g._ = p .sinO

= =ccos(_.%)

For the coordinate system introduced and usillg the degrees of convergence, the inner-

products in Equations 8 can be rewritten as

g,, + g,# • cos. = r/_ (13)
g_ • cosa + g,.j = --r/j

By solving these equations, we get

_i + _?i • cos a _i
tan ¢_-- , cos 0 -- p = 1 (14)

_i" sina cos _'

In the special case of two cylinders,the value of vector if,isobtaiued directlyas _, - _=.

When the vector _, has been computed, the values of the parameters A's can be obtained

by solving the set of scalar linearequations or directlyfrom the vector equation 9. Multiply

thisequation by _,_ = _, x _ and _,_ = _, x _ respectively,to obtain A_ and Aj.

ki= (PJ°- Pio)"_..

(Pio - P.o)"_..
A_= (e. - P_o)"_.. (15)

T



When at least one of the A's is out of range (e.g.A_ _ [0, 1]), the distance between the

corresponding end-sphere (P$ - Pi(0) or P_= = Pi( 1 )) and the other volume is computed. The

problem is identical to computing the shortest distance between a sphere and a spherical-cone.

This problem is solved in two steps,

1. Compute the point in the ads nearest to the center of the sphere.

2. Update the value of Ay, to obey the angular condition represented by Equation 8.

where ai = arcsin_7i

Distance Between Volumes Generated from Dynamic Spheres with

Two-degrees of Freedom

Distances between spherical-planes (two-degree of _.edom) will involve determining the dis-

tances between spherical-vertices and spherical-planes as well as between spherical-edges. All

po6sibilities are included by these two types of comparisons.

Spherical-edges axe one-degree of _eedom geometries, so they have been considered previ-

ously. However, given that an exhaustive distance computation between Ml the spherical-edges

will be considered highly ine_cient, several rules will have to be considered to reduce the

number of elements potentially involved and therefore the number of comparisons.

The distance between a spherical-vertex or silnl,ly a sphere and a spherical-plane is com-

puted by a process similar to the one for computing the distance between a point and a plane.

That is,firstby projecting the point onto the plane and then by measuring the distance between

the point and the projected-point.

In our case, a sphere projected onto a spherical-t)laneproduces a "projected-sphere" inside

the spherical-plane in such a way that the distanc,-,between the two volumes is obtained by

measuring the distance between these two spheres.

The process for computing the distance between spherical-verticesof volume i and the

spherical-planej issolved in two stages.

I. Compute the perpendicular to the surfax:eof spherical-plane_.

The unitary vector perpendicular to the surface,_#,,must obey the following equations

where

q

n2, • t'ji "-- rljI (18)
ffi,"Evj_= r/j2

(Ri,- Rio) (R/2-R/o) (19)
_'i_= {e,,_ e_oI" ,,j2= {.p.,__eio{



(Pj,.- .P.,o) (.F'r,- .Pjo) (2o)
_'i,.= I .F,j,- P..,oI' _r,= I .F'j_- .F'ioI

A pseudo-spherical coordinates system based on vectors _'jx, _7j2 and njc = _jl x _'j2 is

introduced to compute the vector n_8, according to the Equation 12. In this case the
values of the basic varisbles sre

@j = arctan(V?Y2 - 7?jr • cos a
r/ix • sin a

where a = _c_(_t. _2)

), 0j = arccos '!i--2--1
cos_y' p=l (21)

2. Project each spherical-vertex of volume i onto volume j and compute the distances:

(a) Each spherical-vertex of volumei, {(P_,k. P_,,), k= 1, K, K > 3},is associated with

a projected-sphere in the volume j, (Pp_,,, P'_,k). The center of the projected sphere

is computed as follows

where the distance between centersis computed by

(22)

co6_#
(_)

When the center,Pp,,,k,has been comput._l the radius, 27_a, and the parameters A's

for the projected-sphere need to be obta.ined. To compute Ayl and Ay2, multiply the

firstEquation 5 by _j_ = n_ x _y2 and n_, = n_ x ffytrespectively,to give

ai,.= (P""" - .F'jo)._i_
CPj,.- e.,o)•-.%

A.i",= (P''''" - P._o)•","-_o,
C.P_,- .z:'_o)-,v._o_ (24)

(b) The distance between the sphericaJ-vertexand the spherical-plane,supposed it un-

bounded, isgiven by

If the spherical-vertex corresponding to the minimum distance, (D_' = min_,(D_}), gener-

ates a projected-sphere inside the spherical-plane, (,\'a _ [0, 1]), then this minimum distance is

actually the distance between the two objects. Otherwise, the values of the A'a of the projected-

sphere for all the spherical-vertex will determine up to four spherical-edge to spherical-edge
distance computations.



Numerical Results and Example

A set of algorithms has been implemented in order to verifythe theory and to determine the

simplicity and efficiencyof the technique presented in this paper. The spherical-geometries

generated from dynamic-spheres have been used to representvarious robotic systems and their
environments.

The distance computation algorithms have been tested on a standard SUN SPARCstation

1, a RISC-based workstation, using sets of one hundred randomly generated and positioned

volumes. The minimum, maximum, and average times in milliseconds for computing distance

between all the combinations of objects developed in the theory have been recorded in the

following table.

Objects Compared

sphere to sphere

sphere to spherical-cylinder

sphere to spherical-cone

sphere to spherical-plane

spherical-cylinderto spherical-cylinder

spherical-cylinderto spherical-cone and

sphericaJ-cone to spherical-cone

spherical-cylinderto spherical-plane, and

spherical-cone to spherical-plane*

spherical-plane, to spherical-plane.

Minimum Maximum

Time (ms) Time (ms)

0.05 0.05

0.14 0.14

0.25 0.26

0.65 0.91

0.20

0.65

0.72

0.23

1.57

3.86

Average

Time (ms)

0.05

0.14

0.26

0.87

0.23

1.05

2.82

2.81 9.09 7.01

(*) For these computations, planes with 4 verticeshave been considered

A robotic testbed platform, used at the CIRSSE to study robotic assembly of structures in

space, has been modeled in order to thoroughly rest the entire theory. The setup consists of

a PUMA 560 and a PUMA 600 each mounted on a three-degree of freedom platform. Each

platform can be independently translatedalong a common track and has two rotational degrees
of freedom, rotation about a verticalaxis and tiltabout a horizontal axis.

A kinematic model based on homogeneous transformation matrices using a modified form

of the Denavitt-Hartenberg parameters [20]is used in order to determine the position of the
robot finks.

Each linkof the robotic system has at leastone ,'u_sociatedvolume as can be seen in Figure 5.

In particular each individual PUMA robot-arm is modeled by the followingspherical-volumes:

A sphere and a spherical-cylinderfor Link 0, a sl)herical-cyUnderfor Link I, spherical-planes

for links 2 and 3, this latterone including the wrist,and a sphere as an approximation to the

gripper. A more precise representation of the latimerobjects could be constructed using several

smaller volumes. An infiniteplane isused to defim-,the floor.The descriptionof each volume in

terms of itsend-spheres with respect to itscoordinate frame appears in the following table.The

spherical-plane representing Link 2 has been clipped by two relationsin the form of Equation 6

whose parameters do not appear in the table.

I0



Name

Link 0 ,Sphere

cylinder

Coordinate Frame

P0

0

Y(rnm)

604 0

Z(mm)Type

PO

X(mm)

0

597

R(mm)

305

83

83

Link 1 Cylinder P1 0 0 83

0 152 0 83

Link 2 Plane P2 -146 -149 0 51

149

149

-146

Link3 Pl -e i P3

0

0

0

470

86

-86

-86

76

Wrist Cylinder

[ Hand Sphere

76

-356

51

51

43

43

43

P4 0 0 0 61

0 0 -38 61

Pla 0 -62 0 43

When considering self-collisionfor the PUMA robot arm, the set of volumes described above

can be simplified to give even a better approximatiou. In terms of distance computation, _ 2

and 3 are represented better by a combination of spheric,M-cones and spherical cylinders. This
isdue to the factthat certain linkscan never collideand in addition, certain surfaces willnever

be involved in the computation of shortest distaalcesbetween elements in the same robot-arm,

The following table shows the pairs of elements which need to be checked for self-collision.

Link 0 Linkl Link 2

sphere sph-cylinder sph-cylinder sph-cylinder sph-cone
=,

Link 3 and wrist

sphericM-cone X X - -

gripper

sphere X X X X

As can be seen in the table,only six distances need to be computed: one sphere to sphere,

three sphere to spherical-cylinder,one sphere to ._pherical-cone,and one spherical-cylinderto

spherical-cone. Taking values from the table of computation times, the minimum, maximum,

and average times in milliseconds are 1.37,2.30, an,[ 1.78 respectively.The maximum error in

distances with respect to the exact shape of links 0 co 3 plus the sphere at the end islessthan

one centimeter. Collisionswith the flooraxe de_ermined immediately from the z-coordinates of

the sphere bounding the gripper and one end-sphere of the spherical-cone for Link3.

For the overall robotic system, using the volumes shown in Figure 5, the number of com-

parisons required axe i sphere to sphere. 14 sphere to sphere-cylinder,11 sphere to spherical-

plane, 20 spherical-cylinderto spherical-cylinder,2.3spherical-cylinderto spherical-plane and

12 spherical-plane to spherical-plane. This gives _,finimum, maximum and average times in

milliseconds of 66, 220 and 170 respectively.

When restrictingthe volumes to zero or one d_._ree of freedom, using spherical-cones for

links 2 and 3 plus wrists, as well as replacing plat forms with hemispheres, the computation

time is reduced significantly. In this case the nuufl_,.r o["comparisons are as follows, 6 sphere to



Figure 5: Robotic-system: Cooperative robot-arms

sphere, 14 sphere to sphere-cylinder,14 sphere to sphere-cone, 10 spheric.M-cylinderto spherical-

cylinder, 15 spherical-cylinderto spherical-cone and 4 spherical-cone to spherical-cone. This

gives minimum, maximum and average times in miUiseconds of 20, 38 and 28 respectively.

Details of these numerical resultsaxe presented aild discussed in a CIRSSE report[21].

Conclusions

A new three-dimensional object representation technique for generating spherical-volumes has

been presented based on the idea that any real object can be approximated by an infinite

number of spheres. These spheres are easilydescribed by introducing the concept of dynamic-

spheres. Although only linear functions have bo_.n used for describing the dynaznic-spheres,

the set of volumes generated isquite e_ensive and has been proved to be enough to model a

robotic system with reasonable accuracy. The concept iseasilyextended to include other kinds

of functions.

A very fastprocedure for computing distances between spherical-volumes has been devel-

oped with good numerical results. The procedure has been shown to be simple and efilcient

when dealing with robotic systems.

Futher work willfocus on using other kinds of functions for the dynamic-spheres, with the

intent of: -increasing the variety of volumes generated, e.g., in two-degree of freedom a dynamic-

sphere could follow general surfaces in order to give _t better approximation of complex objects;

-considering basic movements such as spheres rot_tt ittg around an axis to describe the movement

of a robot-arm in terms of the volumes swept by it.- Links.
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